Exclusion of a proton ATPase from the apical membrane is associated with cell polarity and tip growth in Nicotiana tabacum pollen tubes.
نویسندگان
چکیده
Polarized growth in pollen tubes results from exocytosis at the tip and is associated with conspicuous polarization of Ca(2+), H(+), K(+), and Cl(-) -fluxes. Here, we show that cell polarity in Nicotiana tabacum pollen is associated with the exclusion of a novel pollen-specific H(+)-ATPase, Nt AHA, from the growing apex. Nt AHA colocalizes with extracellular H(+) effluxes, which revert to influxes where Nt AHA is absent. Fluorescence recovery after photobleaching analysis showed that Nt AHA moves toward the apex of growing pollen tubes, suggesting that the major mechanism of insertion is not through apical exocytosis. Nt AHA mRNA is also excluded from the tip, suggesting a mechanism of polarization acting at the level of translation. Localized applications of the cation ionophore gramicidin A had no effect where Nt AHA was present but acidified the cytosol and induced reorientation of the pollen tube where Nt AHA was absent. Transgenic pollen overexpressing Nt AHA-GFP developed abnormal callose plugs accompanied by abnormal H(+) flux profiles. Furthermore, there is no net flux of H(+) in defined patches of membrane where callose plugs are to be formed. Taken together, our results suggest that proton dynamics may underlie basic mechanisms of polarity and spatial regulation in growing pollen tubes.
منابع مشابه
Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion.
Phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P(2)] occurs in the apical plasma membrane of growing pollen tubes. Because enzymes responsible for PtdIns(4,5)P(2) production at that location are uncharacterized, functions of PtdIns(4,5)P(2) in pollen tube tip growth are unresolved. Two candidate genes encoding pollen-expressed Arabidopsis thaliana phosphatidylinositol-4-phosphate 5-kinases (...
متن کاملType B Phosphatidylinositol-4-Phosphate 5-Kinases Mediate Arabidopsis and Nicotiana tabacum Pollen Tube Growth by Regulating Apical Pectin Secretion W
Phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] occurs in the apical plasma membrane of growing pollen tubes. Because enzymes responsible for PtdIns(4,5)P2 production at that location are uncharacterized, functions of PtdIns(4,5)P2 in pollen tube tip growth are unresolved. Two candidate genes encoding pollen-expressed Arabidopsis thaliana phosphatidylinositol-4-phosphate 5-kinases (PI4P 5...
متن کاملSecretion and Endocytosis in Pollen Tubes: Models of Tip Growth in the Spot Light
Pollen tube tip growth is a widely used model ideally suited to study cellular processes underlying polarized cell expansion. Local secretion supplying material for plasma membrane (PM) and cell wall extension is essential for this process. Cell wall biogenesis requires fusion of secretory vesicles with the PM at an about 10× higher rate than PM extension. Excess material is therefore incorpora...
متن کاملArabidopsis phosphatidylinositol-4-monophosphate 5-kinase 4 regulates pollen tube growth and polarity by modulating membrane recycling.
Phosphatidylinositol-4-monophosphate 5-kinases produce phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] and have been implicated in vesicle trafficking and cytoskeletal rearrangements. Here, we adopted a reverse genetics approach to investigate the function of the Arabidopsis thaliana pollen-expressed gene encoding phosphatidylinositol-4-monophosphate 5-kinase 4 (PIP5K4). Pollen germin...
متن کاملPollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling.
Phosphatidyl inositol 4,5-bisphosphate (PI 4,5-P2) accumulates in a Rac/Rop-dependent manner in the pollen tube tip plasma membrane, where it may control actin organization and membrane traffic. PI 4,5-P2 is hydrolyzed by phospholipase C (PLC) activity to the signaling molecules inositol 1,4,5-trisphosphate and diacyl glycerol (DAG). To investigate PLC activity during tip growth, we cloned Nt P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 20 3 شماره
صفحات -
تاریخ انتشار 2008